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Abstract

In this paper, a special class of rings for which an element a in R, satisfying the additional prop-
erty an = an−1 + an−1, for an integer n > 1 is introduced and several results and examples
related to this special class of ringsis presented.
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1 Introduction

Special classes of rings play vital role in abstract algebra and its applications. One of such
special classes of rings is Boolean ringRB for which a2 = a for all a inRB . The Boolean ring plays
a vital role in the areas of communication, computer science and engineering. The author in [8]
studied a special class of rings on the notion of SS-element of a ring for which a2 = a+ a for all a
in the ring. In [5] and [6] also studied on the structure of SS elements of near-ring. The authors in
[7] studied central SS-elements of a ring and [3] introduced the notion of partially ordered gamma
near-rings and characterize their properties. The aim of this paper is to introduce a special class of
rings R for which an element a in R, satisfying the additional property an = an−1 + an−1, where
n > 1 is an integer, for an integer a in R, and explore its results and examples.

Section 2 describes some important definitions and theorems that are needed throughout this
paper. The main result and conclusion are presented in Section 3 and 4 respectively.

2 Preliminaries

Throughout this paper, the symbolR is used to represent a ring. Some definitions from [4] that
are essential in proving our result are presented. Readers are referred to [1] and [2] for detailed
concepts of rings. This section begins by recalling the following definitions:

Definition 2.1. A ring R is called an idempotent ring if a2 = a for all a in R.

Definition 2.2. An element a of a ring R is called nilpotent if there exists a positive integer n, called the
index, such that an = 0.

Definition 2.3. Let R be a ring. If there exists a positive integer n such that na = 0R for all a ∈ R, then
the smallest such positive integer n is called the characteristic of R. If no such positive integer n exists, then
R is said to be characteristic zero.

Definition 2.4. A special class of rings is a ring R with the additional property that an = an−1 + an−1

for an element a in R and an integer n > 1.

Note that if R is a special class of rings with unit element 1, then 0 and 2 are called trivial
elements, since 0n = 0n−1 + 0n−1 and 2n = 2n−1 + 2n−1 for any integer n > 1. Other elements
of the ring R are called non-trivial elements. Throughout this paper, the structure a3 = a2 + a2 is
used for an element a in R for proving the results.

Example 2.1. Let H = {e, a} be a cyclic group of order 2 and let Z2 = {0, 1} be a field. Then, Z2(H) =
{0, a, e, a+ e} is a group algebra with respect to the operations ‘+‘ and ‘.‘ defined by the following Table 1
and Table 2.

Table 1: Addition operation over Z2(H).

+ 0 a e a+ e

0 0 a e a+ e
a a 0 a+ e e
e e a+ e 0 a

a+ e a+ e e a 0
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Table 2: Multiplication operation over Z2(H).

� 0 a e a+ e

0 0 0 0 0
a 0 e e a+ e
e 0 a e a+ e

a+ e 0 a+ e a+ e 0

The elements 0 and a+ e of Z2(H) satisfy the additional property an = an−1 + an−1 for n = 3.
Hence, Z2(H) is a special class of rings. Note that 0 is a trivial element, and a + e is a non-trivial
element in Z2(H).

Example 2.2. Let Z3 = {0, 1, 2} be a field, and let G = {g : g2 = 1} be a group. Then, Z3(G) =
{0, 1, 2, g, 2g, 1 + g, 2 + g, 1 + 2g, 2 + 2g} is a group algebra with respect to the operations ‘ + ‘ and ‘.‘
defined by the Table 3 and Table 4.

Table 3: Addition operation over Z3(G).

+ 0 1 2 g 2g 1 + g 2 + g 1 + 2g 2 + 2g

0 0 1 2 g 2g 1 + g 2 + g 1 + 2g 2 + 2g
1 1 2 0 1 + g 1 + 2g 2 + g g 2 + 2g 2g
2 2 0 1 2 + g 2 + 2g g 1 + g 2g 1 + 2g
g g 1 + g 2 + g 2g 0 1 + 2g 2 + 2g 1 2
2g 2g 1 + 2g 2 + 2g 0 g 1 2 1 + g 2 + g

1 + g 1 + g 2 + g g 1 + 2g 1 2 + 2g 2g 2 0
2 + g 2 + g g 1 + g 2 + 2g 2 2g 1 + 2g 0 1
1 + 2g 1 + 2g 2 + 2g 2g 1 1 + g 2 0 2 + g g
2 + 2g 2 + 2g 2g 1 + 2g 2 2 + g 0 1 g 1 + g

Table 4: Multiplication operation over Z3(G).

� 0 1 2 g 2g 1 + g 2 + g 1 + 2g 2 + 2g

0 0 0 0 0 0 0 0 0 0
1 0 1 2 g 2g 1 + g 2 + g 1 + 2g 2 + 2g
2 0 2 1 2g g 2 + 2g 1 + 2g 2 + g 1 + g
g 0 g 2g 1 2 1 + g 1 + 2g 2 + g 2 + 2g
2g 0 2g g 2 1 2 + 2g 2 + g 1 + 2g 1 + g

1 + g 0 1 + g 2 + 2g 1 + g 2 + 2g 2 + 2g 0 0 1 + g
2 + g 0 2 + g 1 + 2g 1 + 2g 2 + g 0 2 + g 1 + 2g 0
1 + 2g 0 1 + 2g 2 + g 2 + g 1 + 2g 0 1 + 2g 2 + g 0
2 + 2g 0 2 + 2g 1 + g 2 + 2g 1 + g 1 + g 0 0 2 + 2g

Hence, it can be seen that Z3(G) is a special class of rings.
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3 Main Results

In this section, the main results are provided.

Theorem 3.1. Let R be a ring with identity 1. Then, every special class of rings has zero divisors.

Proof. Suppose a is a non-zero element in a special class of rings R. Then, a3 = a2 + a2 for an
element a in R. This implies that a2(a − 2) = 0. From this it can be directly concluded that
a− 2 6= 0. If a− 2 = 0, then a = 2which contradicts to the fact that a is a non-trivial element in R.
Therefore, it is compulsory have a− 2 6= 0. Thus, R has zero divisors.

Theorem 3.2. LetR andR′ be two rings with unity 1 and 1′ respectively. Let f : R→ R
′ be a monomor-

phism. Then,

(i) R is a special class of rings if and only if R′ is a special class of rings.

(ii) If R is a special class of rings of characteristic 2 with a 6= 0, then R′ contains nilpotent.

Proof. (i) Let R be a special class of rings and let a ∈ R. Since f(a) ∈ R′ and a3 = a2 + a2, f(a3) =
f(a2 + a2) is obtained. Using a monomorphism for f would yield (f(a))3 = (f(a))2 + (f(a))2.

Therefore,R′ is a special class of rings. On the other-hand, let f(a) ∈ R′ . Then, (f(a))3 = (f(a))2+
(f(a))2. Using a monomorphism for f would yield a3 = a2+a2. This concludes thatR is a special
class of rings.

(ii) Let R be a special class of rings of characteristic 2 with a 6= 0. Since R′ is a special class of
rings, and f(a) ∈ R′ , in view of (i), (f(a))3 = (f(a))2+(f(a))2. Then, f(a3) = f(a2+a2) = f(2a2).

This gives f(0) = (f(a))3. Therefore, (f(a))3 = 0
′ . Hence, f(a) is nilpotent in R′ .

Theorem 3.3. If ei for i = 1, 2, 3, ..., n are idempotent elements and a is an element in special class of rings
R, then u =

∑n

i=1
ei a is a element in special class of rings R.

Proof. Let R be special class of rings and let u =
∑n

i=1
ei a. Then,

u3 = (
∑n

i=1
ei a)

3 =
∑n

i=1

3
ei a

3 =
(∑n

i=1
ei

)3
a3 =

(∑n

i=1
e2i ei

)
a3.

Since ei for i = 1, 2, ..., n are idempotent elements, we can further write,

u3 =
(∑n

i=1
ei ∗ ei

)
a3 =

∑n

i=1
e2i (a

2 + a2) =
∑n

i=1
e2i a

2 +
∑n

i=1
e2i a

2 = u2 + u2.

Hence, u =
∑n

i=1
ei a is an element in special class of rings R.
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Definition 3.1. An element c of a special class of rings R is said to be central if cx = xc for all x ∈ R.

Theorem 3.4. Let ϕ : R → R
′ be ring homomorphism. If c is a central of special class of rings R, then

ϕ(c) is also central in a special class of rings R′ .

Proof. Let c be a non-zero central element in a special class of rings R. By definition 10, cx = xc

for every x ∈ R. Since ϕ : R → R
′ be ring homomorphism and c, x ∈ R. Then, ϕ(c), ϕ(x) ∈ R′ .

Now,
ϕ(c)ϕ(x) = ϕ(cx) = ϕ(xc) = ϕ(x)ϕ(c).

Hence, ϕ(c) is central element in the special class of rings R′ .

Theorem 3.5. Let a be a non-zero element in a special class of rings R, then a3 6= a2.

Proof. Let a be a non-zero element in special class of rings R. Suppose a3 = a2, then a3 = a2 + a2

for n = 3. Then, a2 = 0 gives a = 0, which is a contradiction. Hence, the theorem is proved.

Theorem 3.6. Let R be a special class of rings with unity 1 of characteristic 2, and a∈ R if and only if a is
nilpotent with index 3.

Proof. Let R be a special class of rings and let a ∈ R. Then, a3 = a2 + a2 gives a3 = 0. Hence, a is
nilpotent of the special class of rings R with index 3. On the other hand, converse is obvious.

Theorem 3.7. Let R be a special class of rings with unity 1 of characteristic 2 and let c be any non-zero
central element in R. If b is a non-zero element in R, then cbc is an element in R.

Proof. By theorem 3.6, it can be seen that c3 = 0. Since c ∈ R is a central element, then cb = bc for
all b ∈ R. Then,

(cbc)2 + (cbc)2 = 2(cbc)2 = 0.

Also,
(cbc)3 = (cbc)(cbc)(cbc) = cbc2(bc)cbc = cbc2(cb)cbc = cbc3(bc)(bc) = 0.

From the above equations, it can be seen that cbc is an element of the special class of rings R.

Theorem 3.8. Let R be a special class of rings with unity 1 and let a be any non-zero element of R with
characteristic 6= 2 . (1− a) is an element in the special class of rings R if and only if a has its own inverse.

Proof. Let R be special class of rings with unity 1 and let a be any non-zero element of R with
characteristic 6= 2. Suppose (1− a) is an element of R. Then,

(1− a)3 = (1− a)2 + (1− a)2.

This gives that,
a2 − a3 = 1− a.

By right cancellation law, this yields a2 = 1. Hence, a has its own inverse. On the other hand,
converse is obvious.
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Theorem 3.9. Let φ : R→ Re×R(1− e) is a homomorphism from a special class of rings R to another
special class of rings Re × R(1 − e) defined by φ(a) = (ae, a(1 − e)), where e and 1 − e are idempotent
elements of Re and R(1− e), respectively. If R has a central, then Re×R(1− e) has a central.

Proof. LetR andRe×R(1−e) be two special class of rings. Let e and 1−e are idempotent elements
ofRe andR(1−e), respectively. Then e2 = e and (1−e)2 = 1−e. Let a ∈ R be a non-zero element
in R. Then,

a3 = a2 + a2.

Now,
(φ(a))3 = φ(a3) = φ(a2 + a2) = φ(a2) + φ(a2) = (φ(a))2 + (φ(a))2.

Hence, φ(a) is element in Re × R(1 − e). Let c′ , b′ ∈ Re × R(1 − e) such that c′ = φ(c) =
(ce, c(1− e)) and b′ = φ(b) = (be, b(1− e)) for every c, b ∈ R. Let c be central in R, then there exist
b ∈ R such that cb = bc. Now,

c
′
b
′
=φ(c)φ(b) = φ(cb) = φ(bc) = (bce, bc(1− e)) = (bce2, bc(1− e)2) = (bcee, bc(1− e)(1− e))

= (b(ce)e, b(c(1− e)(1− e)) = (b(ec)e, b((1− e)c(1− e)) = (be.ce, b(1− e).c(1− e))

= ((be, b(1− e))(ce, c(1− e)) = φ(b)φ(c) = b
′
c
′
.

Hence, Re×R(1− e) has a central element.

Theorem 3.10. LetH = {f/f2 = 1} be a group and let Zp be a field of characteristic p, where p is a prime.
Then, the group algebra Zp(H) is a special class of rings.

Proof. Let (1 + f) ∈ Zp(H). It is observed that,

(1 + f)2 = (1 + f)(1 + f) = 1 + 2f + f2 = 2(1 + f).

Now,
(1 + f)2 + (1 + f)2 = 2(1 + f) + 2(1 + f) = 4(1 + f),

and
(1 + f)3 = (1 + f)(1 + f)2 = (1 + f)2(1 + f) = 4(1 + f).

Therefore,
(1 + f)3 = (1 + f)2 + (1 + f)2.

Hence, (1 + f) is a non-trivial element of Zp(H).

Now,

(1 + (p− 1)f)2 = 1 + 2(p− 1)f + (p− 1)2f2 = 1 + 2(p− 1)f + 1 = 2 + 2(p− 1)f,

and

(1 + (p− 1)f)3 = (1 + (p− 1)f)(1 + (p− 1)f)2 = (1 + (p− 1)f)(2 + 2(p− 1)f) = 4 + 4(p− 1)f.
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Hence, it can be seen that 1 + (p− 1)f is a non-trivial element of Zp(H).

If l +mf , l 6= 1,m 6= 1 are non-trivial element of Zp(H), then it can be derived that (l +mf)3 =
(l +mf)2 + (l +mf)2. Expanding this equation would yield

(l2 + 3lm2) + (m3 + 3l2m)f = 2(l2 +m2) + 2(lm+ml)f.

By comparing coefficients of f and constants would obtain

l2 + 3lm2 = 2(l2 +m2),

and
m3 + 3l2m = 2(lm+ml).

These equations are satisfied only when l = m = 1. This is a contradiction to our assumption.
Hence, there does not exist any element other than (1 + f) and 1 + (p − 1)f to be elements of
Zp(H). Hence, (1+f) and (1+(p−1)f) are only non-trivial elements of Zp(H). Therefore, Zp(H)
is a special class of rings.

Definition 3.2. [1] A ring R is called (right) primitive if and only if R has a faithful irreducible module.
If R is arbitrary and I is the set of irreducible R−modules, then the kernel of I is called the radical of R. If
I is faithful, then R is called semi-simple.

Lemma 3.1. [Maschke Theorem] Let G be a finite group of order n and K be a field with a characteristic
which does not divide n. Then, the group ringK(G) is semi-simple.

Theorem 3.11. Let F(G) be a group algebra, where F is a field and G is a cyclic group generated by an
element a of order n(n is even integer). Then, the characteristic of a field F is p or p − 2 if and only if
1 + sam, where s = p− 2 andm = n

2 , is a non-trivial element of F(G).

Proof. Suppose that F is a field of characteristic p or p − 2. Let n
2 = m and s = p − 1. Then it is

obvious that (1 + sam) value neither zero nor 2. Now,

(1+sam)2 = (1+sam)(1+sam) = 1+(p−1)(p−1)a2m+((p−1)+(p−1))am = 2+(2p−2)am = 4+2pam,

since the characteristic of the field F is p. And,

(1 + sam)2 + (1 + sam)2 = (2p2 − 4p+ 4) + (4p− 4)am = 4− 4am,

since the characteristic of the field F is p. This shows that (1+sam) is a non-trivial element of F(G).

Now,

(1 + sam)3 = (1 + sam)(1 + sam)2

= (1 + sam)((p2 − 2p+ 2) + (2p− 2)am)

= (1 + (p− 1)am)(p2 − 2p+ 2 + (2p− 2)am)

= p2 − 2p+ 2 + (2p− 2)am + (p− 1)(p2 − 2p+ 2)am + (p− 1)(2p− 2)a2m

= p2 − 2p+ 2 + [(2p− 2) + (p3 − 2p2 + 2p− p2 + 2p− 2)]am + (2p2 − 2p− 2p+ 2)

= p2 − 2p+ 2 + [p3 − 3p2 + 6p− 4]am + (2p2 − 4p+ 2)

= 3p2 − 6p+ 4 + (p3 − 3p2 + 6p− 4)am.
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If the characteristic of the field F is p then the above equation gives 4−4am. If the characteristic
of the field F is p − 2 then the above equation gives (4 + 2pam). This shows that (1 + sam) is a
non-trivial element of F(G). On the other hand, let (1 + sam) is a non-trivial element of F(G).
Then, it can be deduced that

(1 + sam)3 = (1 + sam)2 + (1 + sam)2.

By comparing coefficients of am and constants, 1 + 3s2 = 2 + 2s2 and s3 + 3s = 4s. From these
equations, we have s2 = 1, so that (p − 1)2 = 1. This gives p(p − 2) = 0. This implies that either
p = 0 or p = 2, since F has no zero divisors. Similarly, it can be observed that characteristic of the
field F is either p or p− 2.

Theorem 3.12. Let F(G) be a group algebra, where F is a field and G is a cyclic group generated by an
element a of order n(n is even integer). If 1 + sam , where s = p− 2 andm = n

2 , is a non-trivial element
of F(G), then the group algebra F(G) is semi-simple.

Proof. Suppose that 1 + sam is a non-trivial element of F(G). Let F be a field and let G be a cyclic
group generated by an element a of order n(n is even integer). By Theorem 3.11, the characteristic
of the field F is either p or p − 2. Consequently, the characteristic of the field F is an odd number
and does not divide n. By Lemma 3.1, F(G) is semi-simple.

4 Conclusions

In this paper, a special class of rings is introduced. Some results and examples related to the
special class of rings have been presented. Furthermore, the study of this special class of rings
can be extended to other branches of algebras such as near-rings, near-fields, near-modules and
near-algebras.
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